Math 112 – Review for Test 3

Directions: Show your work for full credit. The way you drive your answer is most important.

- 1. Solve the following differential equations:
 - (a) dy/dt = y² sin(t) satisfying y(0) = 1/2.
 (b) y' = yt satisfying y(0) = 1.

 - (c) $t\frac{dx}{dt} = (1+2\ln t)\tan x$. (Assume x, t > 0.)
 - (d) $x(x+1)\frac{du}{dx} = u^2$ satisfying u(1) = 1.
 - (e) $\frac{dy}{dt} = -y \ln(\frac{y}{2})$ satisfying y(0) = 1.
- 2. In psychology, the Weber-Fechner Law describes a person's response to a stimulus as follows: the rate of change of the reaction R with respect to the stimulus S is inversely proportional to the stimulus. Solve the differential equation and examine the behaviour of the response curve.
- 3. A cubic ice cube with side length a melts at a rate proportional to its surface area.
 - (a) Write a differential equation of its volume, V.
 - (b) If the initial volume is V_0 , solve the differential equation and graph the solution.
 - (c) When does the ice cube disappear?
- 4. Let P(t) represent the number of wolves in a population at time t years, when $t \ge 0$. The population is increasing at a rate directly proportional to 800 - P(t), where the constant of proportionality is k.
 - (a) If P(0) = 500, find P(t) in terms of k and t.
 - (b) If P(2) = 700, find k.
 - (c) Find the value that P(t) approaches as t gets very large.
- (a) Find the 6th degree McLaurin polynomial for $f(x) = x \sin x$. 5.
 - (b) Use Taylor's theorem to bound the error in approximating the function $f(x) = x \sin(x)$ on the interval $[0, \pi/2].$
 - (c) Find the actual largest error committed by $M_6(x)$ on the same interval.
- 6. Using the fact that $d(\arctan x)dx = 1/(1+x^2)$ and $\arctan 1 = \pi/4$, approximate the value of π using the third-degree Taylor polynomial of $4 \arctan x$ about x = 0.
- 7. Determine if the following integral are convergent or divergent, If they converge, evaluate them.

(a)
$$\int_1^\infty \frac{dx}{x\sqrt{1+x^2}}$$

(b)
$$J_5 (x-1)^{3/2}$$

(c) $\int_{-\infty}^{\infty} x^2 dx$

(c)
$$\int_0^\infty \frac{x^2 dx}{4x^3+5}$$

- (d) $\int_0^6 \frac{dx}{(x-4)^{2/3}}$
- 8. Use convergence test to determine if the following integrals converge or diverge.
 - (a) $\int_1^\infty \frac{dx}{x^3+1}$
 - (b) $\int_0^1 \frac{dx}{x^{19/20}}$

 - (c) $\int_1^\infty \frac{du}{u+u^2}$
 - (d) $\int_0^\infty \frac{dy}{1+e^y}$

(e)
$$\int_{0}^{\infty} \frac{e^{-x} dx}{\sqrt{x}}$$

(f) $\int_{1}^{\infty} \frac{4dx}{x(x+1)}$
(g) $\int_{1}^{\infty} \frac{dx}{\sqrt{x+x^{3}}}$
(h) $\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}}$ for $p > 1$
(i) $\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}}$ for $p < 1$
(j) $\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}}$ for $p = 1$
(k) $\int_{1}^{2} \frac{dx}{x(\ln x)^{p}}$ for $p > 1$
(l) $\int_{1}^{2} \frac{dx}{x(\ln x)^{p}}$ for $p < 1$
(m) $\int_{1}^{2} \frac{dx}{x(\ln x)^{p}}$ for $p = 1$

- 9. Compute the following limits:
 - $\begin{array}{ll} \text{(a)} & \lim_{x \to 0^+} x \ln x \\ \text{(b)} & \lim_{x \to \infty} \frac{1+2x}{\sqrt{x}} \\ \text{(c)} & \lim_{x \to 0^+} \frac{3^{\sin x} 1}{x} \\ \text{(d)} & \lim_{x \to \infty} e^{-x} x^{1/2} \\ \text{(e)} & \lim_{x \to \infty} (\ln x)^{1/x} \\ \text{(f)} & \lim_{x \to 1^+} x^{\frac{1}{1-x}} \\ \text{(g)} & \lim_{x \to \infty} (\ln x)^{1/x} \end{array}$

10. Do the following sequences converge or diverge, if they do find their limit.

(a)
$$a_n = \{\frac{3n}{2n-1}\}_{n=1}^{\infty}$$

(b) $a_n = \{\sqrt{\frac{7n}{n-4}}\}_{n=5}^{\infty}$
(c) $a_n = \{\frac{(2n+5)^2}{n^2}\}_{n=1}^{\infty}$
(d) $a_n = \{\frac{n^3}{2n}\}_{n=1}^{\infty}$
(e) $a_n = \{\frac{n}{10} + \frac{10}{n}\}_{n=1}^{\infty}$
(f) $a_n = \{\frac{(-1)^n}{n}\}_{n=1}^{\infty}$

11. You should be comfortable with finding the sums of infinite geometric series like in the following examples:

(a)
$$\sum_{n=1}^{\infty} \frac{4^n}{5^{n+1}}$$

(b) $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$
(c) $\sum_{n=0}^{\infty} \left(\frac{-1}{2}\right)^n$